

HONEOYE LAKE WATERSHED
TASK FORCE

WINTER 2026

Honeoye Lake Watershed Task Force Newsletter

Table of contents:

Spotted Lanternfly 1-2

Chairman's Update 2025 3

WQIP Award 4

New Employee at Soil & Water 4

State of the Lake 5-6

Nutrient Inactivant & Aeration Projects 7

Road Salt Reduction 8

Eastern Hemlock Trees Protected Against HWA 9

Roadside Stabilization Project 10

What is Considered a Pollinator? 11

Septic Replacement Program 12

Rain Barrel Workshop 13

Sandy Bottom Park Shoreline Project 14

2025 Secchi Disc Program 15

2025 Watercraft Steward Update 16-18

Boat Cleaning Station 19

Hemlock to High Top Partners 20

21

Safeguarding Our Finger Lakes from the Spotted Lanternfly

By Lindsey Balman, Invasive Species Project Coordinator, Finger Lakes Partnership for Regional Invasive Species Management, Finger Lakes Institute (FLI) at Hobart and William Smith Colleges

The spotted lanternfly (SLF) (*Lycorma delicatula*), is an invasive insect that threatens New York's natural resources. First introduced to Pennsylvania in 2014, SLF spread rapidly throughout the Northeast and Mid-Atlantic regions of United States, with confirmed infestations in New York in 2020. Since then, established populations have taken ahold in Long Island and lower Hudson Valley with continuous spread into the Southern Tier, Finger Lakes, and Capital regions. In the Finger Lakes, there are known SLF populations in Monroe, Livingston, Ontario, Seneca, Onondaga, Tompkins, Tioga, and Broome counties.

SLF feeds using their piercing-sucking mouthparts to tap directly into a plant's vascular system. Their preferred host is the tree-of-heaven (*Ailanthus altissima*), another invasive species, but they are far from picky. SLF are known to feed on over 70 plant species including grapevines, hops, maples, walnuts, fruit trees, and other economically and ecologically important native plants.

As they feed, SLF weakens their host plants by draining essential nutrients and creating opening wounds. They also excrete a sugary substance called honeydew, which attracts nuisance insects such as yellow jackets and hornets and promotes the growth of black sooty mold on leaves and stems. Heavy infestations can cause stress to plants, reduce crop yields, and kill plant hosts. This makes spotted lanternfly a major concern for vineyards, orchards, and other agricultural systems in the Finger Lakes region.

One of the most important components of slowing the spread of SLF is learning how to identify it across its four major life stages. Egg masses are present all year round and look like small grey or brown clumps of mud. These can be found on trees, rocks, or any smooth surface. First, second, and third instar SLF nymphs can be found from May to July and appear as small insects with black and white spots, easily misidentified as ticks. SLF molts during its fourth instar stage, emerging as bright red with white

Adult SLF in October on a tree-of-heaven, Seneca County; Photo Credit: Lindsey Balman, FLI

Continued

Safeguarding Our Finger Lakes from the Spotted Lanternfly Continued...

spots from July to mid-August. SLF molts one last time to become adults, which are about an inch long with gray, black-spotted forewings and bright red, black, and white hindwings that are visible when they fly or rest with their wings open.

In New York State, SLF management has shifted from early detection and eradication towards research, education and outreach, and targeted control in high-risk areas surrounding transportation and distribution hubs. Within the Finger Lakes region, management efforts focus on early detection and monitoring to track the spread of SLF, along with targeted control to protect high-value resources, particularly vineyards and other agricultural industries.

Spotted lanternfly can be controlled mechanically through the use of sticky bands and circle traps on trees, vacuum removal of adults, and scrapping egg masses during winter months. Additional methods such as targeted insecticides and emerging biological control methods are still being researched and developed.

Finger Lakes community members can play an important

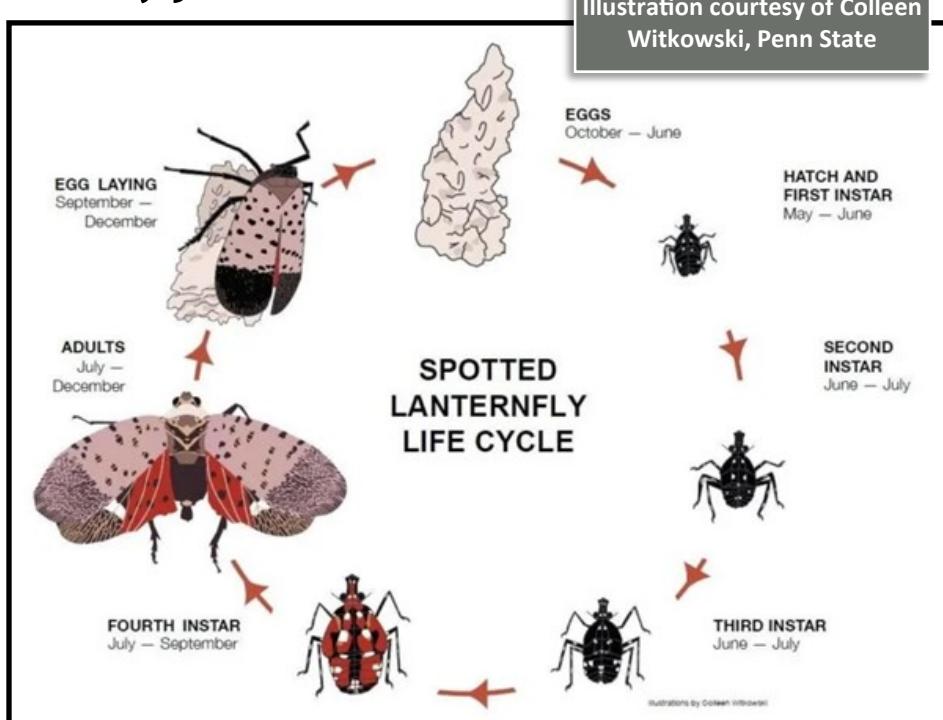


Illustration courtesy of Colleen Witkowski, Penn State

role in protecting our farms, forests, and landscapes by learning how to identify and report spotted lanternfly and its host plants. If you want to learn more about our control efforts, please reach out to Lydia Martin, our Terrestrial Invasive Species Program Manager, at lmartin@hws.edu. If you're looking for educational materials or want to learn about upcoming events, reach out to Laurel Williams, our Education and Outreach Manager, at lwilliams@hws.edu. For more information about spotted lanternfly, check out the Finger Lakes PRISM website (fingerlakesinvasives.org) or the Cornell Integrated Pest Management's website (cals.cornell.edu/integrated-pest-management/outreach-education/whats-bugging-you/spotted-lanternfly).

Honeoye Lake Watershed Task Force (HLWTF)

Chairman's 2025 Project Update: Terry Gronwall

Projects to improve water quality in Honeoye Lake and its watershed

The Honeoye Lake Watershed Management Plan, the New York State (NYS) Department of Environmental Conservation's (DEC) Harmful Algal Bloom (HAB) Action Plan, and DEC's Total Maximum Daily Load (TMDL) Plan all have a common focus: to implement Best Management Practices (BMPs) to reduce nutrient loading (both internal and external) and sediment reaching Honeoye Lake.

HLWTF Website: Please check out our comprehensive HLWTF website. It has regularly updated Honeoye Lake data, a summary of HLWTF completed water quality projects, information on upcoming projects, Honeoye Lake water quality planning documents, past HLWTF newsletters, and guides that lake residents can follow that will help to reduce nutrient run-off into the lake. The website also contains a weekly summer water quality blog: www.honeoyelakewatershed.org

NYS DEC Water Quality Improvement Project (WQIP) Round 16 Grant application for Honeoye Lake Aeration System Engineering Planning Project: Ontario County Planning Department and the HLWTF engaged a lake management consultant in 2022 to complete a grant funded detailed aeration system engineering design study required for a potential future permit application and implementation grant. A decision on whether to pursue grant funding and implementation of an aeration system will be made as soon as we can confirm the best type of large lake aeration system, now that the DEC has completed their post Alum Treatment Pilot monitoring. Information on this potential project is available on the HLWTF website: www.honeoyelakewatershed.org

Ontario County SWCD received a grant in 2025 to assist the towns in Ontario County in reducing road salt usage: \$250,000 DEC WQIP grant was awarded to assist Ontario County town highway departments with purchasing live edge snow plow blades and other equipment to reduce road salt usage. See page 6 for more info.

Sandy Bottom Park Shoreline Stabilization Project:

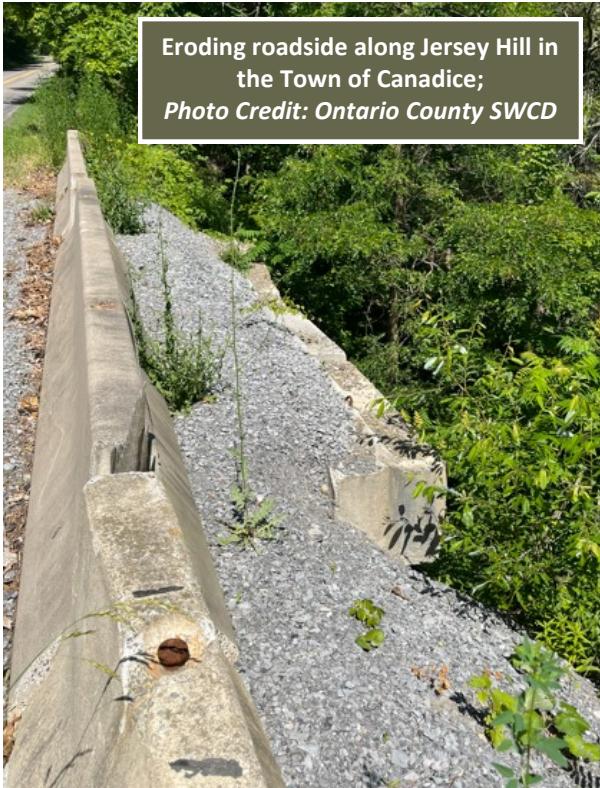
Town of Richmond and Ontario County SWCD completed a \$15,000 Ontario County Water Resources Council (WRC) grant project for Sandy Bottom Park's shoreline in October. See page 12.

DEC Honeoye Lake Nutrient Inactivant Pilot Project:

The DEC Alum Treatment was completed in November 2022. We did not see the expected phosphorus reduction, algae reduction, and water clarity increase during 2023-2025 summer seasons. DEC is currently evaluating post-treatment results.

[Honeoye Lake Nutrient Inactivant Pilot Study \(arcgis.com\)](http://Honeoye%20Lake%20Nutrient%20Inactivant%20Pilot%20Study%20(arcgis.com))

2025 HLWTF Newsletter: Our 2025 HLWTF Winter newsletter was published in February 2025. This newsletter contained information on recent HLWTF projects and lake-related educational articles. Available at www.honeoyelakewatershed.org


Blue-Green Algae Monitoring Project: At the request of NYS DEC, the lake surface was visually examined for blue-green algae blooms once a week from June through mid-October 2025. Results were shared on the DEC HABs alert website as well as posted weekly on HLWTF website's water quality blog.

2025 Collected Lake Water Quality Data June-Sept.: HLWTF collected weekly water column temperature and dissolved oxygen profiles, and water clarity data. Water samples were collected twice a month (June-September) for lab testing for phosphorus and nitrogen. Honeoye Valley Association (HVA) citizen Secchi Disk volunteer program collected near-shore water clarity and temperature data.

These projects result from a partnership among NYS DEC, Ontario County Planning Department, Ontario County SWCD, Finger Lakes Community College, Finger Lakes Institute, Finger Lakes Partnership for Regional Invasive Species Management (FL-PRISM), Cornell University, Honeoye Valley Association, lake residents, lake users, and the Towns of Richmond, Canadice, Bristol, South Bristol, and Naples. For more information, please contact Terry Gronwall, HLWTF Chairman, at watershedtaskforce@gmail.com.

WQIP Award for Roadside Ditch Stabilization

By Ontario County Soil & Water Conservation District

Eroding roadside along Jersey Hill in the Town of Canadice;
Photo Credit: Ontario County SWCD

Ontario County SWCD was recently awarded \$1,580,000 for the Ontario County Roadside Ditch Stabilization Program through the New York State Department of Environmental Conservation Water Quality Improvement Project (WQIP) Round 21. This funding supports the stabilization of severely eroding roadside along six locations on Jersey Hill Road, which is adjacent to a major tributary of Honeoye Lake, as well as stabilization of roadside ditches within the Canadice Lake outlet. This funding supports the continued partnership with the Town of Canadice to address areas of roadside stabilization for both road integrity and public safety as well as water quality improvement. The work helps to eliminate the amount of nutrient laden sediment transported through ditch systems to nearby tributaries and lakes, following key action items outlined in the Honeoye Lake Harmful Algal Blooms (HABs) Action Plan and the Genesee River Watershed 9 Element Plan. As a community, we recognize the benefits that even seemingly small changes can have on water quality. It is imperative that we work together to do what we can to protect water quality and the public infrastructure from which we all benefit.

New Employee at Soil & Water

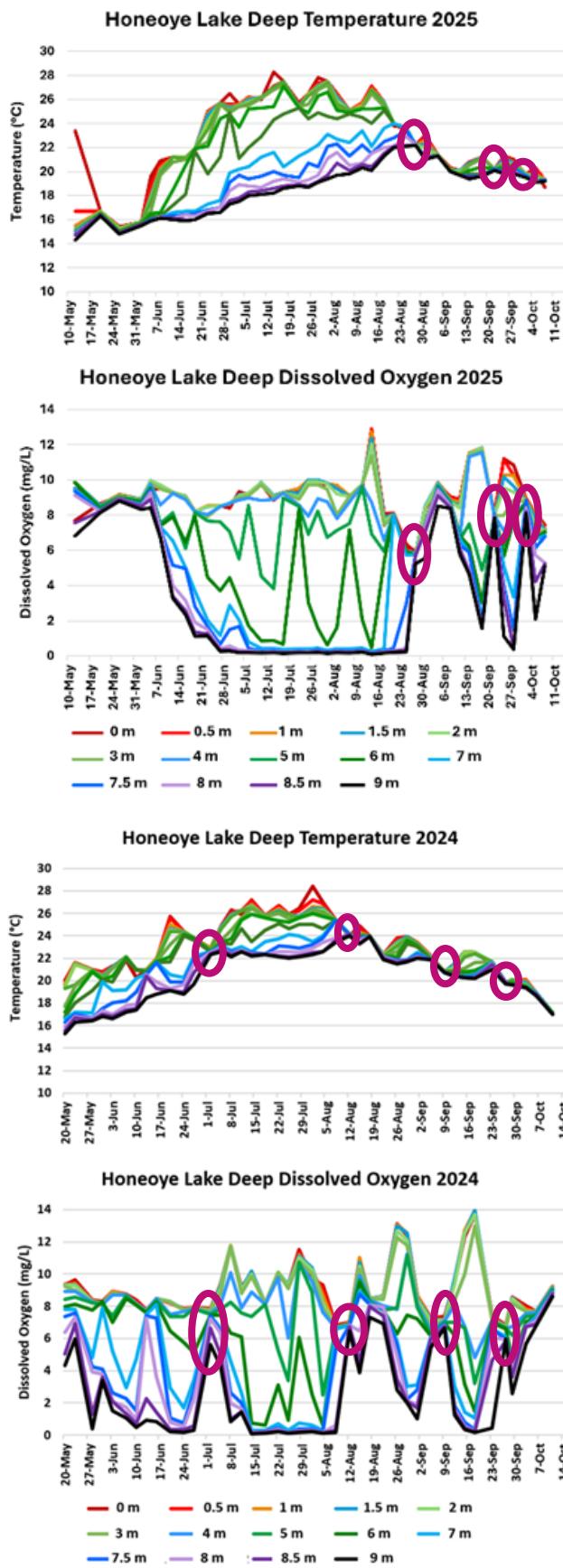

Jeremy Paris started with Ontario County SWCD in March of 2025 as a Senior Conservation District Technician. Jeremy comes to the District with lots of conservation implementation experience. Prior to joining the District, Jeremy was a Civil Engineer Technician with the USDA-Natural Resource Conservation Service, implementing design and installation of best management practices on farms. Past experiences include a tenure as the Soil & Water Planning Technician with the Monroe County SWCD. There he led the Agricultural Environmental Management (AEM) Program, participated in streambank remediation & design, wetland delineation, Ag BMP design, as well as implementing the UAV/Drone program to evaluate soil erosion along Lake Ontario and Irondequoit Bay. Before joining the Conservation District in Monroe, Jeremy was an Ag Engineer Technician with Agricultural Consulting Service, Inc. for 8 years doing GIS/ Mapping, geophysical electro-conductivity soil mapping, yield data acquisition, Ag BMP design and inspection, soil sampling, and surveying. Jeremy is originally from Henrietta, NY. After graduating from Rush-Henrietta Senior High School, he attended SUNY Morrisville for 2 years majoring in wood products technology. He then transferred to SUNY Environmental Science & Forestry, majoring in Wood Products Engineering and minoring in Forestry. Jeremy has been a Certified Crop Adviser (CCA) for over 12 years and is a member of the Farmland Protection Committee with the Genesee Land Trust. Jeremy enjoys playing ice hockey, fishing, and making maple syrup. We are excited to have Jeremy as part of our team!

Photo Credit:
Ontario County SWCD

2025 State of the Lake

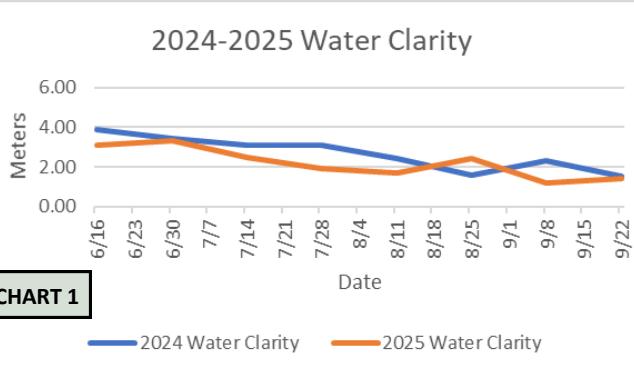
By Terry Gronwall, Honeoye Lake Watershed Task Force

Following an unusual winter with little to no ice cover, Honeoye Lake returned to a near normal seasonal water temperature profile in 2025, reaching a peak of 28 degrees Celsius (~82.4 F) at the surface in mid-July. Heat gained at the surface was transferred downward by seiche activity (internal waves), seen from late May through early August in the charts to the left. It is clearly seen in the volatility of the 6 meter (19.8 feet deep) dark green lines.

Phosphorus is released from the lake's bottom sediments when the lake is stratified and the bottom water becomes anoxic (low dissolved oxygen). The lake was stratified in 2025 for nine weeks, which is three times longer period than 2024. This contributed to significantly higher phosphorus levels and algae levels in late 2025. The first lake mixing event in late August 2025 mixed deep phosphorus rich water into the whole water column, fueling our long and intense blue-green algal bloom in late 2025. The dark pink ovals (O) on the graphs represent the lake mixing events.

The longest period of lake stratification in 2024 occurred from mid-July to early August. It was only about three weeks of stratification. This shorter period of stratification in 2024 contributed to lower phosphorus levels and lower algae levels, compared to 2025.

A lake's water quality is affected by the complex interaction of physical, chemical, and biological factors. Physical factors are water temperature, wind, and rainfall. Chemical factors are phosphorus and nitrogen levels in the lake water. An example of a biological factor would be the invasive zebra mussels; they eat the green algae (good algae) and spit out the blue green algae, which shifts the blue-green algae to be more dominant. Zebra mussel waste products are highly bioavailable nutrients for algae to use as well.

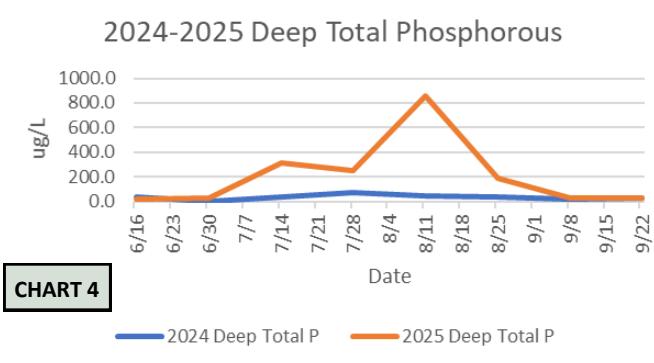
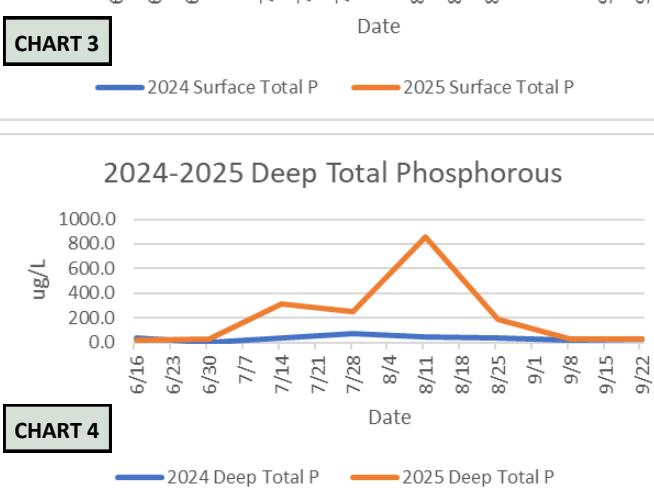
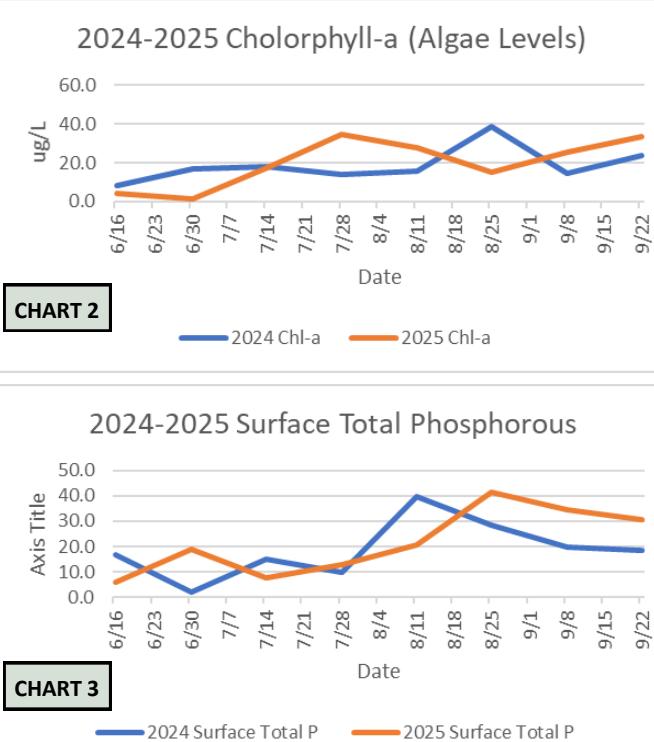

Another biological factor is *Gloeoctrichia*, a blue-green algae that blooms in mid-June until late July. When this dies in late July, the excess phosphorus it has not used is released into the water column. In addition, there is phosphorus that is released from the bottom sediments as

well as phosphorus from stormwater runoff that fuel our traditional late summer blue-green algae blooms.

Continued

2025 State of the Lake Continued...

When *Gloeostrichia* dies, its reproductive resting cells settle on the shallow water bottom sediments where it directly absorbs phosphorus from those sediments over a warm winter and spring and blooms again in the next year.




The lake's Secchi disc readings (water clarity) in 2025 were very similar to 2024. Water clarity is affected by turbidity caused by stormwater runoff and the density of algae in the water column. See chart 1 (1 meter = 3.3 feet).

The pigment chlorophyll-a is a measure of algal abundance. The greatest amounts of algae in 2025 occurred in July and September. There was internal wave activity in mid-July that potentially brought nutrient-rich bottom water up to the surface and in late-August after a lake mixing event. In 2025, the algae levels were significantly higher than 2024 from mid-July to early August and in September and beyond. See chart 2.

The highest amounts of total phosphorus in the surface water in 2025 occurred in late August through September. This was after the lake completely mixed after being stratified and anoxic for about nine weeks. The total peak surface phosphorus level in 2025 and 2024 were very similar at ~40 ug/L. However, in September the Surface total phosphorus in 2025 was about 50% higher than in 2024. See chart 3.

The 2025 deep total phosphorus level peaked at 853 ug/L in August. In 2024, the peak deep phosphorus level was 75 ug/L. This is more than eleven times more than in 2024. See chart 4. Since phosphorus is released from the lake's bottom sediments when the lake is stratified and the bottom water is anoxic, the longer nine-week period of stratification and anoxia in 2025 is why 2025 had very high deep total phosphorus levels. The surface total phosphorus level only increased by about 50% in September 2025. This is because the deep phosphorus water was mixed with the ~9.5 billion gallons of total water in the lake when the lake completely mixed in late August.

The abundance of phosphorus on the bottom of the lake is due in part to the historical land use patterns. A report on 1929 land use authored by Kyle Ritts and Bruce Gilman shows most of the Honeoye Lake watershed was open farmland with little control for erosion. The historic accumulation of eroded sediments helps account for today's problem. To learn more about this source of lake bottom sediment phosphorus, please

read the article in our [2025 Winter Honeoye Lake Watershed Task Force newsletter](#).

Update on the Honeoye Lake Nutrient Inactivant & Aeration Projects

By Terry Gronwall (HLWTF) & Betsy Landre (Ontario County Planning Department)

Alum Barge, November 2022;
Photo Credit: Terry Gronwall

Multiple studies by consultants and the New York State Department of Environmental Conservation (DEC) indicate that phosphorus released from deep bottom sediments is the primary driver of harmful algal blooms (HABs) in Honeoye Lake. Phosphorus is normally bound to iron in lake sediments, but during extended periods of thermal stratification, when deep water no longer mixes with surface water or the atmosphere, oxygen levels in deep areas (below ~21 feet) decline. When these waters become anoxic (oxygen-depleted), phosphorus is released into the water column, where it can fuel algae growth. These studies are available at: www.honeoyelakewatershed.org/resources.

While HABs are complex and no single solution exists, HLWTF and DEC agree that reducing phosphorus release from deep sediments is essential to long-term improvement in water quality. **Two strategies have been identified for Honeoye Lake:**

Alum treatment (nutrient inactivation).

Aluminum sulfate (alum) has been successfully applied for over 50 years to deep sediments to form a compound that binds phosphorus and prevents its release. DEC currently has a moratorium on alum treatments statewide, but has conducted pilot treatments, including one on Honeoye Lake in fall 2022.

Deep-water aeration/oxygenation.

Maintaining oxygen in deep water can prevent phosphorus from being released from sediments. In 2022, HLWTF and Ontario County sponsored a DEC grant-supported feasibility study completed by Princeton Hydro, LLC. The study recommended a *Side Stream Supersaturation* system, which would pump oxygenated water into the deepest part of the lake (the “treatment area”) via on-shore equipment and underwater lines, maintaining oxygen levels during stratification. More information at: www.honeoyelakewatershed.org/aeration

Photo Credit: Terry Gronwall

Update from the New York State Department of Environmental Conservation Division of Water (DEC):

The DEC “is finalizing its evaluation of the Honeoye Lake Nutrient Inactivant Pilot Treatment. It is DEC’s goal to have this evaluation completed early in the new year. DEC is using this effort, along with two other pilot projects on Peach and Mohegan Lakes, located in Putnam and Westchester counties, respectively, to inform potential guidance and permit requirements on the use of nutrient inactivants in New York. Upon completion of the evaluation, DEC will hold a public meeting in 2026 to provide a summary of findings from the Honeoye Pilot Treatment.”

HLWTF has been researching oxygenation systems used elsewhere. While successful projects exist in small lakes, we have not found successful projects in lakes comparable to Honeoye’s size (~1,800 acres).

With estimated capital costs exceeding \$1.2 million, annual maintenance costs, and evolving technology, HLWTF continues to consult with scientists and industry experts to evaluate options. The goal is to build broad confidence and consensus around an effective, science-based strategy to reduce internal phosphorus loading. When that goal is achieved, HLWTF intends to move quickly to solicit grant funding and matching funds to support implementation of an in-lake strategy.

Road Salt Reduction Grant

By Ontario County Soil & Water Conservation District (SWCD)

Under the New York State Department of Environmental Conservation Water Quality Improvement Project (WQIP) Round 20, the Ontario County SWCD received \$250,000 in funding for the Central Finger Lakes Road Salt Reduction Project. This grant supports 18 towns and villages in purchasing equipment such as live edge plow blades, weather stations, and sander technologies to help reduce the amount of salt used on our roadways in the winter months. Salt levels can accumulate over time, impacting our water quality and aquatic habitat.

Our Highway Departments do an amazing job of keeping our roadways maintained, especially during the winter. Public safety is a priority so the goal is to use new technologies to keep roads clear and safe for the community while balancing environmental concerns. Using live edge plow blades with independent moving sections allows the blade to have closer contact with the road surface and remove more material when plowing, ultimately reducing the amount of salt needed for treatment. Weather stations help municipalities monitor conditions and effectively deploy road plows when needed. With a snowy winter season, Town and Village Highway Departments have been actively using the equipment and have given very positive reviews.

Check out more information from New York State Department of Environmental Conservation as part of their "Don't Be Salty" Campaign highlighting what you can do to reduce salt spreading: www.dec.ny.gov/reduce-rock-salt.

Photo Credit: Ontario County SWCD

Action shot of East Bloomfield plow truck taken from a grant funded weather station that helps the Town monitor road conditions

Eastern Hemlock Trees Protected Against Invasive Hemlock Woolly Adelgid

By Ontario County Soil & Water Conservation District (SWCD)

The District and partners recently wrapped up a multi-year grant project focusing on the treatment of hemlock trees for hemlock woolly adelgid (HWA) in Ontario County. HWA is an invasive insect which attacks hemlock trees and, over a period of several years, kills the trees. Hemlocks are a keystone species in our riparian forest corridors as they typically grow along steep gullies in dense stands. These trees help to provide soil stability along the steep slopes, prevent erosion, help filter nutrients, and provide unique habitat conditions for streams by keeping water cool in their shade. HWA disrupts this ecosystem and poses a threat to our environment as hemlock trees die and the habitat around them is disrupted.

The District utilized \$50,000 from the U.S. Department of Agriculture Forest Service's Great Lakes Restoration Initiative grant funding program, along with match from local partners such as the Canandaigua Lake Watershed Association and the Finger Lakes Land Trust, to treat hemlock trees with chemical insecticides along steep gullies in the Canandaigua Lake and Honeoye Lake watersheds. These insecticides were applied to hemlock trees during ideal conditions to allow for targeted treatment of specific trees infested with HWA. In combination with chemical treatment, the New York State Hemlock Initiative also coordinated releases of beneficial insects at several sites.

Photo Credit: Ontario County SWCD

Photo Credit: Ontario County SWCD

These insects are known to target HWA and feed on them. The goal of that program is to establish a resident population of beneficial insects that will be able to feed on HWA and keep their populations in check for long-term management of this invasive species. The use of chemical treatment provides trees protection while these beneficial insect populations become established.

This project represented a coordinated effort across the region to combat HWA and protect our important hemlock species. Additional partners included Ontario County, New York State Department of Environmental Conservation, and the Rochester Museum and Science Center: Cumming Nature Center. Thank you to everyone who provided support for this project!

Recent Roadside Stabilization Project Completed in the Town of Bristol

By Ontario County Soil & Water Conservation District (SWCD)

After recent storm events caused a massive amount of roadside erosion, including a major slope failure along Egypt Road in the Town of Bristol, the District applied for funding through the New York State Department of Environmental Conservation's Water Quality Improvement Project grant program to implement roadside stabilization projects in the Genesee River Watershed. Funding supported smaller roadside stabilization projects working with the Towns of Canadice and Bristol to install flexamat material for stabilizing critical roadside ditches along 1,150 feet of roadside, as well as a massive road rebuilding and stabilization project along Egypt Road, which has a stream feeding to Mill Creek, a nearby trout stream. This project will help reduce sediment and nutrients entering nearby waterways, as well as help to reduce flooding to the hamlet of Honeoye.

The Town of Bristol Highway Department undertook the construction work themselves and earned an award in the process! Working on an extreme slope, the Town had to shift the road by stripping back several hundred feet of road and rebuilding a stable base to create a solid foundation, excavating down nearly 60 feet. The Town then built up the roadside using concrete mattresses and gabion baskets to stabilize the slope. Further work included subsurface drainage, road resurfacing, guardrails, and geotextile and vegetative stabilization. This project prevents a major road failure and also protects further loss of roadside material to the adjacent stream.

Photo Credits: Ontario County SWCD

What is Considered a Pollinator?

By Ontario County Soil & Water Conservation District (SWCD)

It's not just bees and butterflies! Pollinators also include moths, wasps, flies, beetles, birds, and bats. When pollinators are out searching for food, pollen grains get stuck to their bodies and rub off when they visit the next bloom. A single female bee while foraging may visit hundreds of flowers, transferring pollen the whole time.

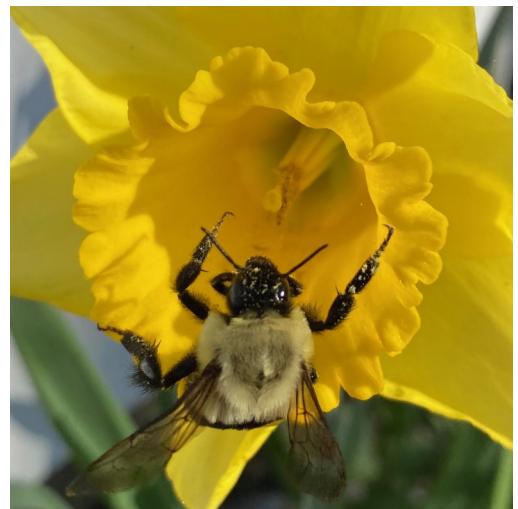
Pollinators are a keystone group of animals in natural areas where they are necessary for the production of many tree, shrub, and wildflower species. Pollinators are feeling the impacts and pressure from habitat loss, disease, parasites, and environmental

contaminants which have led to the decline of many of their species locally and worldwide.

What can we do to help? Planting a mixture of native and heirloom varieties that will bloom in the spring, summer, and fall that have different colors, shapes, and scents will attract different species of pollinators. Providing habitat for pollinators will not only help gardeners but local farms and natural areas as well.

To help develop pollinator habitat, leave areas wild and un-mowed. You can also raise your mower's deck height to let low-growing flowers have a better chance of reaching blooming height. Field edges, fence lines,

hedgerows, banks of drainage ditches, and road edges offer both nesting and forage sites for various pollinator species. Long continuous strips of permanent vegetation link fragmented habitats providing benefits to migrating song birds, game birds, and improving water quality.


Some of the areas that can incorporate pollinator habitat with plantings are community gardens, flower beds, riparian buffer zones, roadsides, landscaped areas at schools or office buildings, parks and golf courses, farm field edges, and orchards.

For a pollinator seed mix, have the site prepped to kill the weed bed. This can be done with the use of pesticides to kill the weeds and grass before tilling the soil under to prep for planting. For a more organic method, use garden plastic sheeting or a tarp to cover the site to kill the current cover; in the following spring the field can be tilled up for planting. This method can take as long as 1-2 years to get the site properly prepped. This is important and will help get the pollinator seeds established and minimize the battle with noxious weeds later on.

Weed pressure can choke out the pollinator species planted before they can get established. Once established, a staggered mowing schedule can be created for maintenance by cutting 1/3 of the pollinator area each year (rotating the mowed section over a 3 year period).

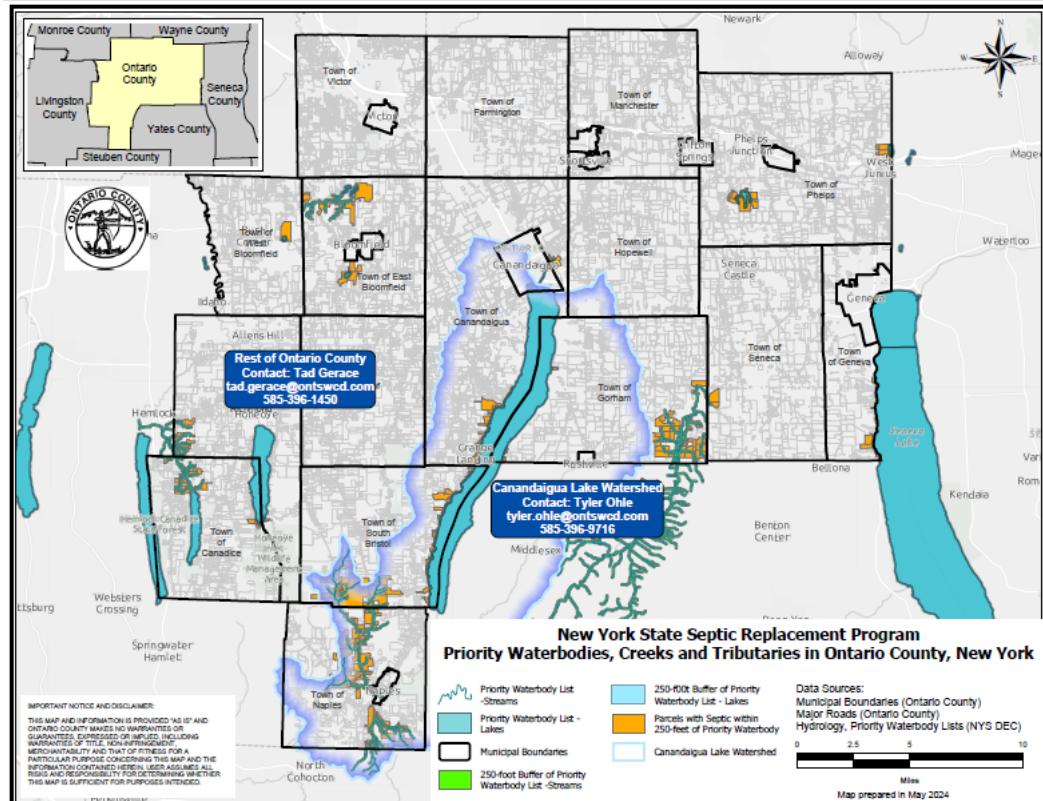
If pesticides are going to be used, select the least toxic product for the targeted species, follow the label's directions, apply at night when the pollinators are sleeping, and monitor the wind to avoid drift to habitat areas or neighbors.

For more resources or to find out about pollinator programs in your area, reach out to your local Cornell Cooperative Extension, SWCD, or USDA. There are a variety of resources online through Pollinator Partnership and the Xerces Society.

Photo Credits: Ontario County SWCD

Update on the Septic System Replacement Program

By Ontario County Soil & Water Conservation District (SWCD)


In 2024, New York State (NYS) Environmental Facilities Corporation awarded Ontario County funds to assist homeowners and small businesses with funding to replace cesspools and failing septic systems within 250 feet of priority waterbodies. These priority waterbodies were determined by NYS Environmental Facilities Corporation and NYS Department of Environmental Conservation.

Ontario County is partnering with the Ontario County Soil & Water Conservation District in the administration of this program. More

information can be found here. Under the program, Ontario County can access monies from the Fund to provide grants to reimburse property owners for up to 50% of the eligible costs (up to a maximum of \$10,000) of their eligible septic system projects. The program seeks to reduce the environmental and public-health impacts associated with the discharge of effluent cesspools and septic systems on groundwater used as drinking water as well as threatened or impaired water bodies such as Seneca, Canandaigua, Honeoye and Canadice Lakes. Eligible property owners received a letter from Ontario County Department of Public Works regarding the program and eligibility.

Photo Credit: Ontario County SWCD

Under Round 1 of funding, 23 projects were completed to upgrade or replace failing or inadequate septic systems. Round 4 funding has been awarded to 23 homeowners to date. Funding is still available for eligible properties. Check out this map to see who is eligible for the program.

Maintaining a functioning septic system is one of the key ways homeowners can help protect drinking water sources for themselves and their communities. Special thanks to Senator Pamela Helming for the work in helping secure the funding to help preserve our valuable Ontario County lakes.

Rain Barrel Workshop in Honeoye

By Ontario County Soil & Water Conservation District (SWCD)

This summer we held three different rain barrel workshops across Ontario County and one them was right in the Town of Richmond. On the evening of August 19, 2025, Birdhouse Brewing Company hosted our workshop in partnership with the Honeoye Valley Association. The event was very well attended with over 60 people coming to listen to the presentation and over 30 barrels sold.

Installing a rain barrel is an easy way to protect our environment and save money. They collect and store rainwater from your roof that would otherwise be lost to runoff and diverted to storm drains or streams. The water from your barrel can then be used for watering flower gardens and lawns, cleaning outdoor furniture, and the list goes on. The cost of the rain barrel at one of our workshops is \$30 and the barrel is rinsed out, pre-drilled, and all of the parts are provided; you just have to assemble it. Soil & Water employees are always there to help and walk you through the building process. It makes for a really fun event!

Thank you to all of the attendees for coming out to our workshop and for making a difference in preventing stormwater pollution. We really appreciate the Honeoye Valley Association for sponsoring the event and for the Birdhouse Brewing Company for graciously hosting the workshop for the community.

Photo Credit: Ontario County SWCD

Photo Credit: Terry Gronwall

Photo Credit: Terry Gronwall

Photo Credit: Terry Gronwall

Sandy Bottom Park Shoreline Stabilization Project

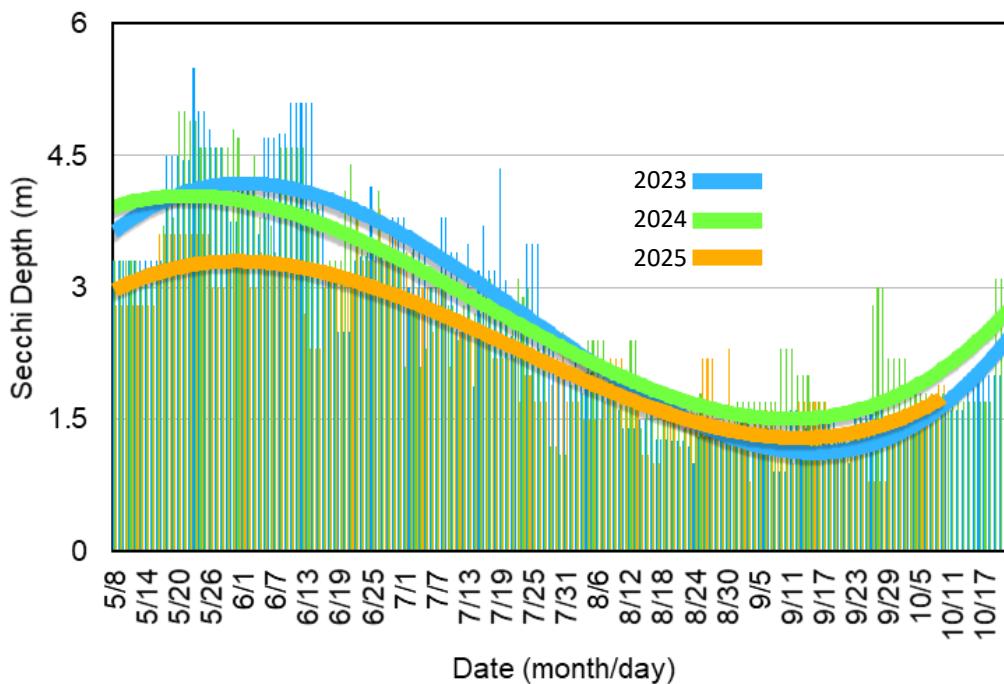
By Ontario County Soil & Water Conservation District (SWCD)

A shoreline stabilization project was recently completed along 120 feet of shoreline at the northern end of Honeoye Lake. Sandy Bottom Park shoreline receives a great deal of erosional pressure from wave and ice activity. Over the years, erosion has impacted the area adjacent to the public swimming beach in the Town of Richmond. This project focused on the reestablishment of a nature-based shoreline.

A past project implemented by the District used soft structure to stabilize the shoreline, but unfortunately, an extended period of flooding and wave action destroyed the work, so this project required a greater use of rock mixed with soft structure and native plantings to provide structural integrity.

Ontario County SWCD designed the project and managed permitting with construction taking place in fall 2025 with funding from the Ontario County Water Resources Council. The Town of Richmond supplied labor and equipment for the installation of the rock, coir logs, coir mats, and additional soil needed for stabilization. Ontario County DPW hydroseeded the exposed soil with a native wetland seed mix purchased by US Fish & Wildlife Service and nurse crop of rye grass for establishment. Ontario County SWCD then used cut stakes of red osier dogwood and planted serviceberry and spicebush.

The use of nature-based stabilization material is preferred for regulating water quality and providing critical habitat for both terrestrial and aquatic organisms. Check it out next time you are enjoying a walk around Sandy Bottom Park!



2025 Honeoye Lake Secchi Disc Program

By Linda Vanderbeck, Secchi Disk Volunteer Program Coordinator

The Honeoye Lake Secchi Disc Program's intent is to measure multi-year water clarity trends. Program volunteers take measurements weekly and this year reported 79 separate measurements from May-September. Water clarity is primarily a function of the lake's algae population, therefore the algae population is monitored indirectly by measuring the water clarity. However, rain storms can cause turbidity that will also reduce water clarity.

Secchi Depth Trendline Comparison for 2023, 2024 and 2025

In 2025, Honeoye Lake exhibited the same pattern documented in the last 9-years' Secchi data. The lake is clear during the spring and early summer, with clarity gradually decreasing as surface water temperature increases. This trend continues until mid-September when the algae population reaches its peak density. As the season moves into fall, water temperature cools, algae dies off, and water clarity improves.

The most significant year-to-year variation occurs during the spring due to variability in weather. Dryer springs with less runoff results in less turbidity and therefore clearer water. However, every year by late

August to mid-September, regardless of the spring weather, there is nearly no variation in year-to-year clarity. Variations in algae density between different areas of the lake are also due to weather. Wind pushes the algae along the lake surface and causes algae to accumulate in the downwind areas.

In addition to water clarity, volunteers subjectively measure the lake's recreational enjoyment. 75% of the ratings were "perfect", "good", or "usable" with surface scum being a stronger deterrent to the lake's recreational enjoyment than algae density.

In 2026, Honeoye Lake is expected to repeat its typical pattern. How clear the water will be in the spring is yet to be seen as winter and early spring weather develops.

Photo Credit: Terry Gronwall

2025 Finger Lakes PRISM Watercraft Steward Update

By Laurel Williams, Invasive Species Education and Outreach Program Manager, & Claire McMahon, Aquatic Invasive Species Fieldwork Coordinator

HOBART AND WILLIAM SMITH

Overview

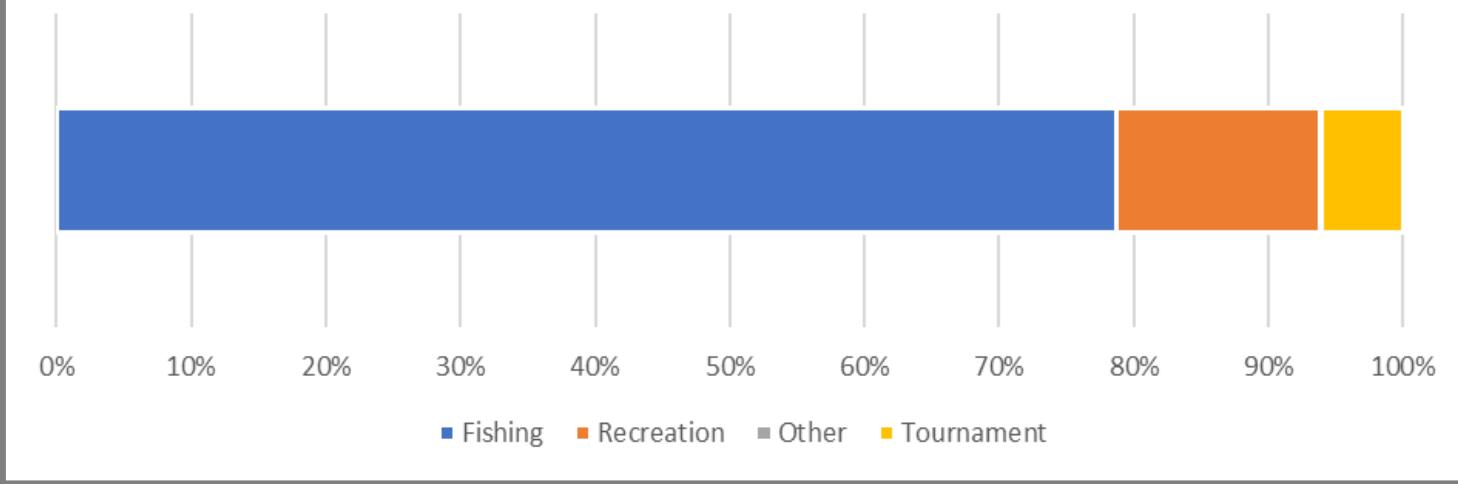

Watercraft inspections at popular boat launches are an effective prevention measure in reducing the spread of aquatic invasive species (AIS). The primary goals of watercraft inspection stewards are to conduct voluntary inspections of all launching and retrieving watercraft for invasive species, and to spread awareness to boaters about their role in stopping the spread of invasive species. Stewards from two watercraft inspection steward programs (WISPs) operated at Honeoye Lake State Marine Park (HLSMP) in 2025. Programs were operated by the Finger Lakes Institute at Hobart and William Smith Colleges (FLI) and the State University of New

Image 1. The view of Honeoye Lake from the Honeoye Lake State Marine Park boat launch.

Photo Credit: FL-PRISM

Boater Activities
Honeoye Lake State Marine Park, 2025

York College of Environmental Science and Forestry (SUNY ESF) in combination with the New York State Office of Parks, Recreation, & Historic Preservation (OPRHP). Steward coverage was coordinated between the two programs to ensure comprehensive and complementary staffing throughout the 2025 season. FLI stewards provided 20 days of coverage at HLSMP from May 28th through September 6th, mostly during the week. This was a slight increase from 19 days of coverage in 2024. HLSMP is one of 20 launches covered by the FLI stewards as part of our regional WISP. Program-wide, stewards

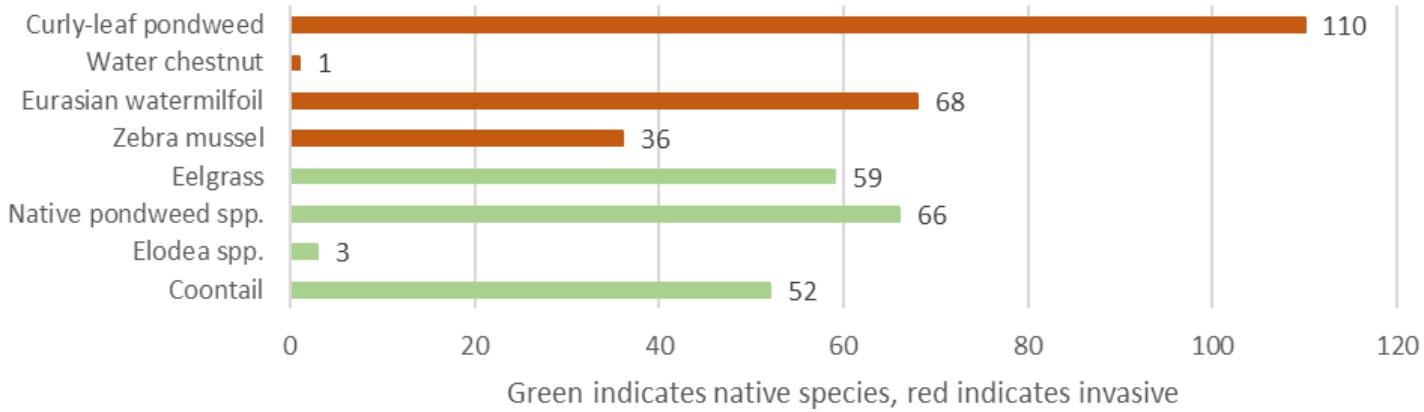
Figure 1. Boater activities at Honeoye Lake State Marine Park in 2025. Fishing was the most common activity (n=395). Other is 0.1% of all activities. Figure reflects data collected by FLI stewards.

Continued

Watercraft Stewards Update Continued...

conducted over 20,000 inspections in 2025, and reached thousands of individuals across 13 waterbodies.

Launch Statistics


Over the FLI WISP's 2025 field season, 505 surveys were completed at HLSMP encompassing 517 watercraft and 501 successful watercraft inspections. During inspections, stewards collect data on variables such as group size, number of watercrafts, type of watercraft, boater activity, and organisms detected. At HLSMP, FLI stewards inspected an average of 25 watercraft per day. The most reported boater activity at the launch was fishing (n=395, 78.2% of inspections), followed by recreation (n=76, 15% of inspections) (Figure 1). Of the 501 watercrafts inspected, 39% (n=196) had organisms detected and 29% (n=146) had invasive species detected.

The most common invasive species found during inspections at HLSMP were curly-leaf pondweed (n=110, 22% of inspections), Eurasian watermilfoil (n=68, 13.6% of inspections), and zebra mussels (n=36, 7.2% of inspections) (Figure 2). Water chestnut was found on one boat. Common species found at HLSMP are consistent with common species found at launches across other Finger Lakes boat launches. The most common native species found at HLSMP were native pondweeds, American eelgrass, coontail, and Elodea spp. On some watercraft, both native and invasive species were detected.

Species detected at HLSMP	Status
Zebra mussels (<i>Dreissena polymorpha</i>)	Invasive
Eurasian watermilfoil (<i>Myriophyllum spicatum</i>)	Invasive
Water chestnut (<i>Trapa natans</i>)	Invasive
Curly-leaf pondweed (<i>Potamogeton crispus</i>)	Invasive
Coontail (<i>Ceratophyllum demersum</i>)	Native
<i>Elodea</i> spp.	Native
Native pondweeds (<i>Potamogeton</i> spp.)	Native
Eelgrass (<i>Vallisneria americana</i>)	Native

Table 1. All species detected on watercraft at HLSMP over the 2025 field season. Four invasive species were detected, and four native species categories were detected.

Common Species Found on Watercraft
Honeoye Lake State Marine Park, 2025

Retrieving watercraft had 92% of all detections (Figure 3 and Table 1).

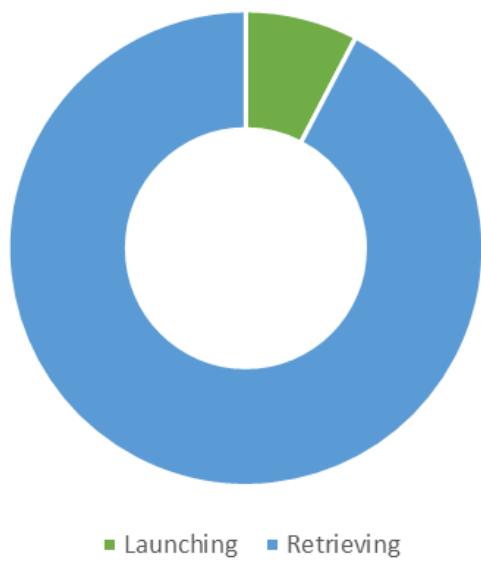

Another primary goal of watercraft inspection stewards is to disseminate information on AIS and to educate boaters, anglers, and community members about AIS introduction prevention. This season, FLI stewards interacted with over 1,000 boaters and community members at HLSMP. Stewards strive to maintain a positive relationship with the community, an important intention since inspections are voluntary. The majority of boaters (97%) allowed stewards to conduct inspections at HLSMP this season.

Figure 2. Counts for common invasive and native species found on watercraft at Honeoye Lake State Marine Park in 2025. Overall, there were 215 invasive species and 180 native species found. Figure reflects data collected by FLI stewards.

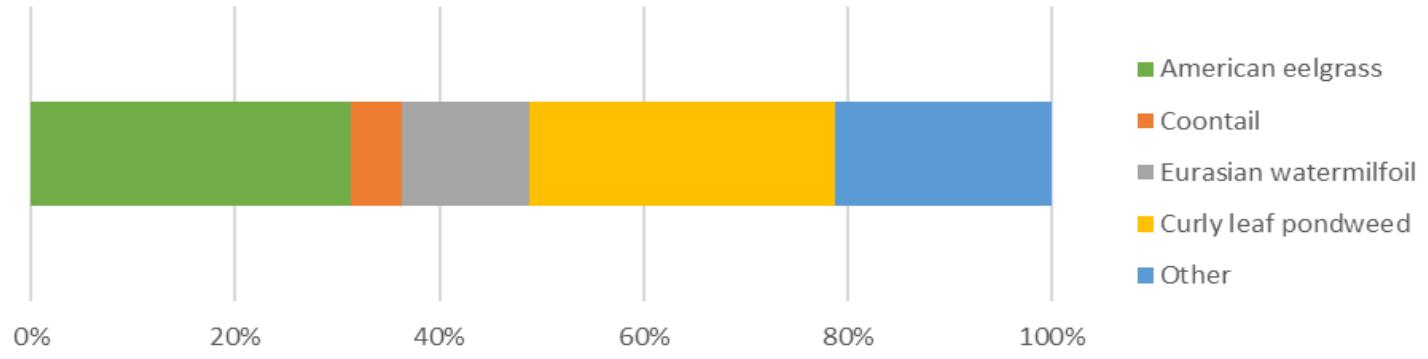
Continued

Watercraft Stewards Update Continued...

Detections Found on Launching vs. Retrieving Watercraft Honeoye Lake State Marine Park, 2025

Figure 3. Percentage of detections found on launching watercraft and retrieving watercraft. The majority (92%) of detections were found on retrieving watercraft. Figure reflects data collected by FLI stewards.

New Initiatives


FLI staff selected HLSMP as a site for testing the impact of removing floating plants from a ramp to reduce the plant detections by stewards. Daily at noon the steward on duty would remove the floating plants from the launch area with a pool skimmer. The skimmed plant species would be identified, and the volume recorded. HLSMP had an average macrophyte volume of around 5 liters skimmed daily, with American eelgrass and curly-leaf pondweed most commonly observed (**Figure 4**). Floating plant percent cover was recorded in a survey prior to skimming. This information will be used to explore the relationship between floating macrophytes in the launch and detections on retrieving watercrafts, which will inform possibly future management techniques to increase the impact of stewards.

FLI watercraft inspection stewards interact with thousands of boaters and community members each season and detect hundreds of AIS across the Finger Lakes region.

Active interceptions of AIS and education and outreach are invaluable in preventing the spread of AIS on Honeoye Lake and the surrounding Finger Lakes. The continual detection of invasive species within Honeoye

Lake and the surrounding region highlights the importance of continuing WISP coverage for future seasons.

Species Skimmed by Stewards Honeoye Lake State Marine Park, 2025

The Finger Lakes PRISM is hosted by the FLI, and is funded by the NYS Environmental Protection Fund, administered by the NYS Department of Environmental Conservation. Partial funding for watercraft stewards on Honeoye Lake is provided by the Canandaigua Lake Watershed Council and Canandaigua Lake Watershed Association.

Figure 4. The percentage of each species skimmed by FLI watercraft inspection stewards at HLSMP during the 2025 field season. Figure reflects data collected by FLI stewards.

Year One of the Seasonal Boat Cleaning Station at Honeoye Lake

By Betsy Landre, Ontario County Planning Department

You may have seen, or even used, the CD3 Boat Cleaning Station this past summer at the Honeoye Lake State Marine Launch. This self-service station provides a variety of tools that boaters can use to remove and properly dispose of plants and animals, often called “aquatic hitchhikers”, from boats, trailers, propellers, and bait buckets.

Cleaning watercraft before launching *and* after leaving the lake is one of the most effective ways to prevent the unintentional spread of aquatic invasive species (AIS).

Aquatic invasive species include animals such as zebra and quagga mussels, Asian clams, and fishhook waterfleas, as well as plants like curlyleaf pondweed, Eurasian watermilfoil, starry stonewort, water chestnut, and hydrilla. Honeoye Lake already has well-established populations of zebra mussels, curlyleaf pondweed, and Eurasian watermilfoil, species that should not be transported to other lakes. Fortunately, Honeoye Lake has not yet experienced infestations of invasive species found elsewhere in the Finger Lakes, including quagga mussels, starry stonewort, and hydrilla. Once introduced, aquatic invasive species can outcompete native plants and animals, disrupt food webs, degrade habitat, and interfere with recreation and navigation. They can also negatively affect property values. Nationwide, the cost of managing AIS is estimated to exceed \$100 billion annually, underscoring the importance of stopping their spread.

The CD3 Boat Cleaning Station is powered by solar energy, requires no connection to local utilities, and is mounted on a trailer so it can be relocated as needed. The unit offers multiple tools to help boaters remove plant and animal debris and drain water from their equipment.

The station complements the watercraft inspection program provided by Lake Stewards at the launch, who educate boaters and help raise awareness about invasive species. When Lake Stewards are not on site, the CD3 station provides boaters with tools to do their part. In 2025, the station recorded 320 cleaning sessions, as tracked by the unit’s analytical features.

Photo Credits: Terry Gronwall

The CD3 Boat Cleaning Station at Honeoye Lake was made possible through funding from the New York State Department of Environmental Conservation’s Finger Lakes Watershed Hub via the NYS Environmental Protection Fund, with local matching funds provided by the Towns of Richmond and Canadice. The Ontario County Planning Department coordinated the grant application and contract. Additional support was provided by New York State Office of Parks, Recreation and Historic Preservation, the Finger Lakes Partnership for Regional Invasive Species Management (FL-PRISM), and the Honeoye Lake Watershed Task Force.

Hemlock to High Tor

Protecting a Landscape We All Share

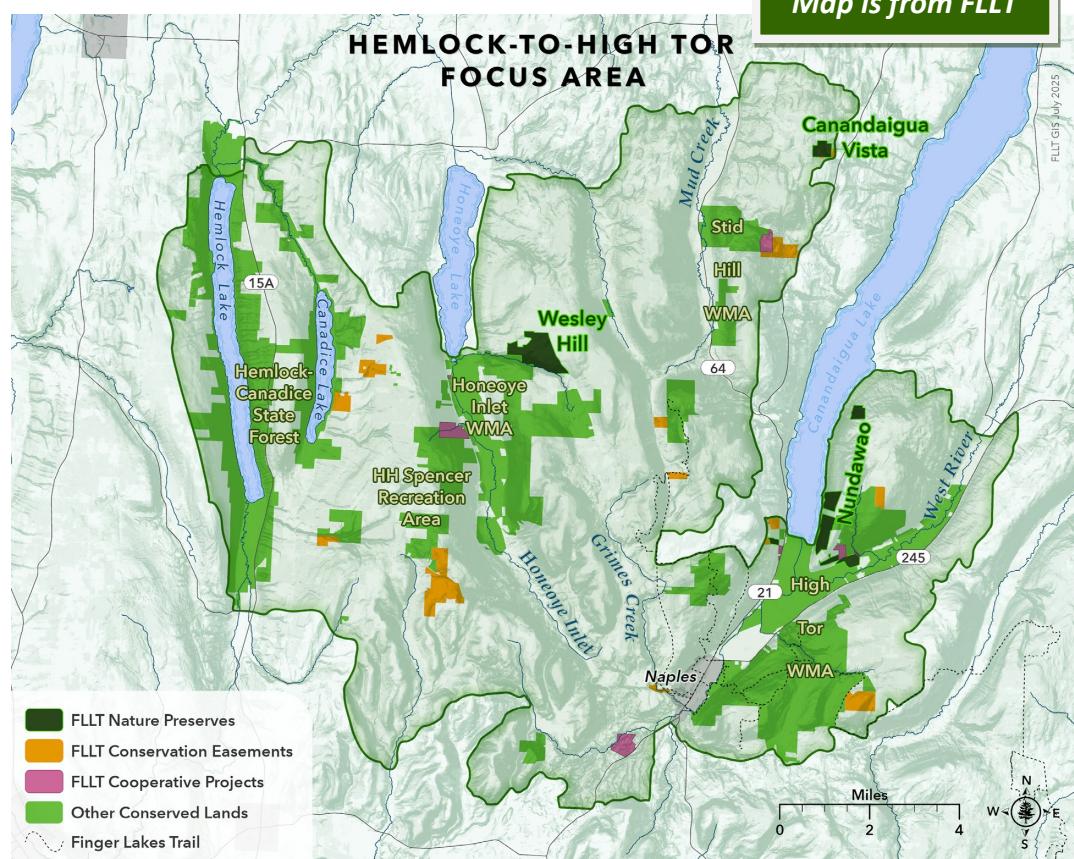
By the Finger Lakes Land Trust (FLLT)

The Finger Lakes Land Trust has launched an initiative to accelerate land protection and stewardship efforts in the western Finger Lakes, where risk of landscape fragmentation is increasing amidst the region's impressive and beloved natural resources.

Spanning 114,000 acres, the Hemlock to High Tor focus area includes some of the largest intact forests in the Finger Lakes—forests that filter our water, stabilize steep slopes, and provide important habitat for wildlife like bear, bobcat, and fisher. These same lands also supply clean drinking water for Rochester and communities around Canandaigua Lake.

Local residents and visitors alike enjoy this landscape through places like Harriet Hollister Spencer State Recreation Area, Cumming Nature Center, High Tor Wildlife Management Area, and the Finger Lakes Trail. By working together, we can expand on this foundation and ensure this area continues to provide clean water, healthy habitat for wildlife, and lasting connections to nature.

Conservation Strategies


To ensure the long-term health of the Hemlock to High Tor region, the Finger Lakes Land Trust's efforts will focus on four key conservation goals:

- 1.) Protecting large blocks of intact forest from fragmentation
- 2.) Creating conservation corridors between existing protected lands
- 3.) Safeguarding and restoring watershed areas that are vital for clean water
- 4.) Enhancing outdoor education and recreation to better connect people with nature
- 5.) Providing for effective long term stewardship of private and public lands

Community Support

The Finger Lakes Land Trust is working with partners and landowners to create a long term conservation plan for the Hemlock to High Tor focus area, including new opportunities for outdoor education and recreation.

We invite you to get involved - by joining a community meeting, requesting more information, or connecting with our staff to talk about your conservation goals. Please reach out to Project Director Lindsay McMillan at lindsaymcmillan@fllt.org or (607) 220-9462.

The Honeoye Lake Watershed Task Force was formed in 1998 by:

*Town of Richmond
Town of Canadice
Town of Bristol
Town of Naples
Town of South Bristol
Honeoye Valley Association*

To Protect and Improve the Water Quality of Honeoye Lake.

Voting Members Include:

Terry Gronwall, Councilmember, Town of Canadice (Chairman)

Steve Barnhoorn, Councilmember, Town of Richmond

Lauren Bolonda, Councilperson, Town of Bristol

Sally Davis Berry, Representative, Town of South Bristol

Mark Adams, Representative, Town of Naples

Bob Gerlach Rep. & Drew Crane Alt., Representative, Honeoye Valley Association

Permanent Professional Support is Provided By:

Megan Webster, Alaina Robarge, Jeremy Paris; Ontario County Soil & Water Conservation District

Dr. Bruce Gilman; Professor Emeritus, Finger Lakes Community College

Tom Harvey, Betsy Landre; Ontario County Planning Department

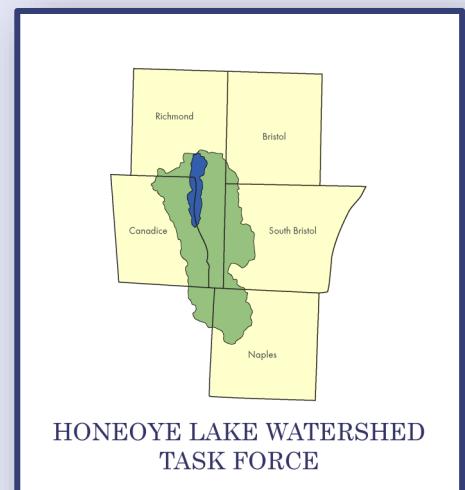
Project Specific Professional Support is Provided By:

NYS Department of Environmental Conservation

Finger Lakes Community College

Cornell Cooperative Extension of Ontario County

Ontario County Water Resources Council


Princeton Hydro Consulting

Finger Lakes Institute

Cornell University

The Nature Conservancy

Finger Lakes Land Trust

Further Information may be obtained by contacting:

Chairman Terry Gronwall at watershedtaskforce@gmail.com